
© 2013 EDB All rights reserved. 1

Monitoring and Debugging PostgreSQL

• Ashutosh Sharma | 2018.02.22

2

● Database Logs

● The PostgreSQL Statistics Collector

● Statistics Views

● Wait Events

● Monitoring query performance using pg_stat_statements

● Useful debugging tools

Agenda

3

Database Logs

● Where Are My Database Logs?
test=> show log_destination;
log_destination

stderr
(1 row)

● log_destination
➢ stderr
➢ syslog
➢ csvlog
➢ eventlog

4

Database Logs

● Stderr

test=> show logging_collector
logging_collector

on
(1 row)

test=> show log_directory;
log_directory

log
(1 row)

5

Database Logs

● Stderr (Continued)

test=> show data_directory;
data_directory

/home/ashu/pgsql/tmp/pgsql/data
(1 row)

test=> show log_filename;
log_filename

postgresql-%y-%m-%d_%h%m%s.log
(1 row)

6

Database Logs

● What Information Do Logfiles Contain?

➢ General LOG information

➢ Error messages

➢ Hints …

7

Database Logs

● General Log Information
LOG: database system was interrupted; last known up at 2018-02-02
12:17:28 IST

LOG: database system was not properly shut down; automatic recovery in
progress

LOG: server process (PID 66538) was terminated by signal 11:
Segmentation fault
DETAIL: Failed process was running: INSERT INTO tab1 VALUES(1);

● Errors
ERROR: relation "tab1" does not exist at character 13

FATAL: role "hacker" does not exist

PANIC: invalid index offnum: 50
STATEMENT: INSERT INTO tab1 VALUES (10000);

8

Database Logs
● Hints

LOG: checkpoints are occurring too frequently
HINT: Consider increasing the configuration parameter
"checkpoint_segments".

ERROR: function non_existing_function() does not exist at character 8
HINT: No function matches the given name and argument types. You might
need to add explicit type casts.
STATEMENT: select non_existing_function();

9

Database Logs
● How to log slow running SQL statements, query waiting

duration, amount of temporary files generated…

➢ Login to the database as a superuser and then execute the
following SQL statements:

test=# ALTER SYSTEM SET log_min_duration_statement to '20s';

test=# ALTER SYSTEM SET log_lock_waits to 'on';

test=# ALTER SYSTEM SET log_temp_files to '0';

test=# SELECT pg_reload_conf();
pg_reload_conf

t
(1 row)

10

● Database Logs

● The PostgreSQL Statistics Collector

● Statistics Views

● Wait Events

● Monitoring query performance using pg_stat_statements

● Useful debugging tools

Agenda

11

The PostgreSQL Statistics Collector

● As the name indicates, postgres statistics collector process collects
statistics about the database.

● It's an optional process with the default value as on and it's behavior
is dependent on a set of track parameters, which guides the stats
collector about which metrics it needs to collect from the running
instance.

● Each individual processes transmit new statistical counts to the
collector process just before going to idle state, the collector
process then collects the stats sent by backend process and
writes the data into some stats file which can be read via number
of views.

12

The PostgreSQL Statistics Collector (Continued)
● Track parameters associated with Statistics Collector

➢ track_activities : enables monitoring of the current command being
executed by any backend process , on by default.

➢ track_activity_query_size : decides the space in terms of bytes reserved
to store user query, 1024 is the default value.

➢ track_counts : allows the stats collector process to collect all the base
table and index table access related statistics and store them into the
pg_stat_tmp location in the form of db_<database_oid>.stat or
globals.stat, on by default.

13

The PostgreSQL Statistics Collector (Continued)
➢ track_io_timing : enables monitoring of disk blocks read and write

time i.e. the time spent on disk blocks read/write operations by each
backend process, off by default.

➢ track_functions : controls tracking of metrics about the user level
functions, default value is none meaning that it won't be tracking any type
of user functions, can be set to pl, C, all..

14

The PostgreSQL Statistics Collector (Continued)
● BEGIN;

● SET track_io_timing = ON;

● EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tab1;
 QUERY PLAN

Seq Scan on tab1 (cost=0.00..607.08 rows=40008 width=330) (actual
time=8.318..38.126 rows=40009 loops=1)
 Buffers: shared read=207
 I/O Timings: read=30.927
 Planning time: 161.577 ms
 Execution time: 42.104 ms

● COMMIT;

➔ TakeAway : Out of 42ms of time spent on query execution,
~32ms were spent on I/O operation.

15

The PostgreSQL Statistics Collector (Continued)

● BEGIN;

● SET track_io_timing = ON;

● EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tab1;
 QUERY PLAN

Seq Scan on tab1 (cost=0.00..607.08 rows=40008 width=330) (actual
time=0.004..7.504 rows=40009 loops=1)
 Buffers: shared hit=207
 Planning time: 0.367 ms
Execution time: 11.478 ms

● COMMIT;

Now, What if the previous query is executed once more...

➔ TakeAway : The query is just about 31ms faster and well, the
reason is very obvious, the data got cached this time..

16

● Database Logs

● The PostgreSQL Statistics Collector

● Statistics Views

● Wait Events

● Monitoring query performance using pg_stat_statements

● Useful debugging tools

Agenda

17

Statistics view
● pg_stat_database

● The database-level statistics are saved in the pg_stat_database
view.

● It contains one row for each database, showing database-wide
statistics.

● It shows the informations such as the number of backend processes
currently connected to a database, number of transactions committed
or rollback in a particular database, number of data blocks read from
disk or the total time spent in disk read or write activities.

● For details on the layout of pg_stat_database statistics view, have a
look at the documentation about pg_stat_database

https://www.postgresql.org/docs/devel/static/monitoring-stats.html#PG-STAT-DATABASE-VIEW

18

Statistics view (Continued)
● How To Make Sense Of Data In Pg_stat_database ?

➔ Getting statistics like the cachehit ratio, dml statistics, transaction
statistics etc. for a particular database ...
➢ CREATE VIEW get_db_stats AS SELECT datname, round((blks_hit::float /

(blks_read+blks_hit+1) * 100)::numeric, 2) as cachehitratio, xact_commit,
xact_rollback, tup_fetched, tup_inserted, tup_updated, tup_deleted FROM
pg_stat_database WHERE datname NOT IN ('template0', 'template1')ORDER
BY cachehitratio desc;

postgres=# select * from get_db_stats;
------------------+-----------
datname | postgres
cachehitratio | 94.32
xact_commit | 22
xact_rollback | 2
tup_fetched | 1236
tup_inserted | 150
tup_updated | 10
tup_deleted | 10

19

Statistics view (Continued)
● How To Make Sense Of Data In Pg_stat_database ?

➔ Finding the total number of temp files generated in a database...

➢ SELECT temp_files, temp_bytes FROM pg_stat_database WHERE datname
= current_database();

➢ SHOW work_mem;

➢ SET work_mem to 'some_higher_value';

➔ Monitoring database loads...

➢ SELECT numbackends , xact_commit , xact_rollback, blks_read +
blks_hit as total_buffer_read FROM pg_stat_database where datname
NOT IN ('template0', 'template1') order by xact_commit desc;

20

Statistics view (Continued)
● pg_stat_all_tables

● The pg_stat_all_tables view contains one row for each table (which
includes system table or a user table or may be TOAST table) in the
current database, showing statistics about accesses to that specific
table.

● The pg_stat_user_tables and pg_stat_sys_tables views contain
the same information as pg_stat_all_tables, but are restricted to
only user and system tables respectively.

● For details on the layout of pg_stat_all_tables statistics view,
have a look at the documentation about pg_stat_all_tables

https://www.postgresql.org/docs/10/static/monitoring-stats.html#PG-STAT-ALL-TABLES-VIEW

21

Statistics view (Continued)
● How To Make Use Of Data In Pg_stat_all_tables ?

➔ Finding top 10 most read tables in the database

➢ SELECT relname, idx_tup_fetch + seq_tup_read as TotalReads FROM
pg_stat_all_tables WHERE idx_tup_fetch + seq_tup_read != 0 order by
TotalReads desc LIMIT 10;

 relname | totalreads
--------------+------------
 pg_class | 27637
 pg_attribute | 692
 pg_opclass | 386
 pg_index | 259
 pg_database | 210
 pg_operator | 148
 pg_proc | 89
 pg_amproc | 77
 pg_amop | 56
 pg_type | 47
(10 rows)

22

Statistics view (Continued)
● How To Make Use Of Data In Pg_stat_all_tables ?

➔ Checking for the dead tuples count to see if a table needs to be
manually VACUUMED or not..

➔ Autovacuum monitoring

➢ SELECT schemaname, relname, last_autovacuum, last_autoanalyze
FROM pg_stat_all_tables WHERE relname='tab1';

➢ SELECT relname, last_vacuum, n_dead_tup, last_analyze FROM
pg_stat_all_tables where relname='tab1';

➔ Finding the ratio of index scan to seq scan on a table.

➢ SELECT sum(idx_scan)/(sum(idx_scan) + sum(seq_scan)) as
idx_scan_ratio FROM pg_stat_all_tables WHERE schemaname='public';

23

Statistics view (Continued)
● pg_stat_activity

● The pg_stat_activity view shows what activity is currently happening
on your PostgreSQL database server.

● It contains one row per server process and shows some very useful
informations like the current state of a running backend process, the
query that the client process is currently running, query start time or
transaction start time, the wait event on which the client is currently
waiting and so on...

● In short, pg_stat_activity basically provides a way to get a snapshot
of what every client on the server is currently doing.

● For details on the layout of pg_stat_activity statistics view, have a
look at the documentation about pg_stat_activity

https://www.postgresql.org/docs/devel/static/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW

24

Statistics view (Continued)
● Querying Pg_stat_activity For ...

➔ Finding out how many queries are currently being executed on
your database
➢ CREATE VIEW get_active_sessions AS SELECT datname, count(*) AS

open, count(*) FILTER (WHERE state= 'active') AS active, count(*)
FILTER (WHERE state = 'idle') AS idle, count(*) FILTER (WHERE state
='idle in transaction') AS idle_in_trans FROM pg_stat_activity GROUP
BY datname;

postgres=# select * from get_active_sessions;
-[RECORD 1]-+---------
datname | postgres
open | 2
active | 1
idle | 1
idle_in_trans | 0

25

Statistics view (Continued)
● Querying Pg_stat_activity For ...
➔ Finding and killing long running idle database connections

➢ CREATE VIEW kill_idle_sessions AS SELECT pg_terminate_backend(pid)
FROM pg_stat_activity WHERE datname = 'postgres' AND pid <>
pg_backend_pid() AND state in ('idle', 'idle in transaction', 'idle in transaction
(aborted)', 'disabled') AND state_change < current_timestamp - INTERVAL '5'
DAY;

postgres=# select * from kill_idle_sessions;
-[RECORD 1]--------+--
pg_terminate_backend | t

postgres=# select * from get_active_sessions;
-[RECORD 1]-+---------
datname | postgres
open | 1
active | 1
idle | 0
idle_in_trans | 0

26

Statistics view (Continued)
● Querying Pg_stat_activity For ...

➔ Wait Event Monitoring for a long running queries

➔ Detecting long running queries or transactions...

➢ SELECT pid, datname, usename, client_addr, now() - query_start as
"runtime", query_start, wait_event_type, wait_event, state, query FROM
pg_stat_activity WHERE now() - query_start > '2 hours'::interval ORDER
BY runtime DESC;

If you want to find out a query running for very long time, say more than
2 hours on PostgreSQL, you can run the following command,

SELECT pid, now() - query_start as "runtime", wait_event_type,
wait_event, state, query FROM pg_stat_activity WHERE now() -
query_start > '5 hours'::interval ORDER BY runtime DESC;

27

Statistics view (Continued)
● Querying Pg_stat_activity For ...

➔ Figuring out where queries come from ...

➢ SELECT application_name, client_addr, client_hostname, client_port
from pg_stat_activity;

➔ Finding blocked sessions

➢ SELECT datname, usename, application_name, now()-backend_start
AS "Session duration", pid, query FROM pg_stat_activity WHERE
state='active' AND wait_event IS NOT NULL;

28

● Database Logs

● The PostgreSQL Statistics Collector

● Statistics Views

● Wait Events

● Monitoring query performance using pg_stat_statements

● Useful debugging tools

Agenda

29

Wait Events
● Wait events report where the backend is waiting

● Two columns in pg_stat_activity

● wait_event_type
● wait_event

● wait_event_type - The type of event for which the backend is
waiting, if any; otherwise NULL.

● wait_event - Wait event name if backend is currently waiting,
otherwise NULL. Some of the possible values for wait_event_type
and wait_events are listed in the following slides

30

Wait Events (Continued)

➢ LWLock : The backend is waiting for a lightweight lock.

➢ Lock : The backend is waiting for a heavyweight lock.

➢ Client : The backend is in idle state waiting on a socket for the query from user.

➢ Acitivity : The auxiallary processes are waiting for some activity to happen.

➢ BufferPin : The server is waiting to acquire a buffer pin where no other
processes has acquired pin on the same buffer.

➢ IO : The server process is waiting for an IO to complete.

➢ Timeout : The server process is waiting for a timeout to expire.

➢ IPC : The server process is waiting for some activity from another process in the
server.

● wait_event_type

31

Wait Events (Continued)

➢ WALWriteLock : Waiting for the WAL Buffers to be written into a disk.

➢ CheckPointLock : Waiting to perform a checkpoint.

➢ ShmemIndexLock : Waiting to find or allocate a space in shared memory

➢ clog : Waiting for I/O on a clog buffer.

➢ buffer_io : Waiting for I/O on a data page to complete.

➢ transactionid : Waiting for a transaction to finish.

➢ Relation : Waiting to acquire lock on a relation.

➢ tuple : Waiting to acquire lock on a tuple.

● wait_event

32

Wait Events (Continued)
synchronous_commit = on;
pgbench -c 20 -j -T 2 300 pgbench

test=# select pid, wait_event, wait_event_type, state from pg_stat_activity WHERE
wait_event is not NULL;
 pid | wait_event | wait_event_type | state
---------+---------------+-----------------+--------
 25632 | transactionid | Lock | active
 25633 | WALWriteLock | LWLockNamed | active
 25635 | WALWriteLock | LWLockNamed | active
 25636 | transactionid | Lock | active
 25638 | transactionid | Lock | active
 25640 | WALWriteLock | LWLockNamed | active
 25642 | WALWriteLock | LWLockNamed | active
………

● Most of the backend sessions are waiting on a WALWriteLock i.e. for
WALBuffers to be flushed.

33

Wait Events (Continued)
synchronous_commit = off;
pgbench -c 20 -j -T 2 300 pgbench

test=# SELECT pid, wait_event, wait_event_type, state, query from
pg_stat_activity WHERE wait_event is not NULL;
 pid | wait_event | wait_event_type | state
-------+---------------+-----------------+--------
 26201 | transactionid | Lock | active
 26203 | transactionid | Lock | active
 26204 | transactionid | Lock | active
(3 rows)

● No more contention on WALWriteLock...

34

● Database Logs

● The PostgreSQL Statistics Collector

● Statistics Views

● Wait Events

● Monitoring query performance using pg_stat_statements

● Useful debugging tools

Agenda

35

pg_stat_statements

● pg_stat_statements is an extension module that tracks the execution
statistics of all SQL statements executed by a server and stores them in
a pg_stat_statements table (which is basically a hash table).

● It's a module that needs to be loaded and is not available in the default
configuration. It can be loaded by adding pg_stat_statements to
shared_preload_libraries in postgresql.conf.

● Whenever any SQL query is executed by a server, pg_stat_statements
adds an entry for that query in the hash table where all the statistics
about the query execution are stored.

● When user queries pg_stat_statements view, it fetches the stats from
the hash table.

36

pg_stat_statements (Continued)

● Track Parameters Associated With Pg_stat_statements

➢ pg_stat_statements.max : pg_stat_statements.max is the maximum
number of statements tracked by the pg_stat_statements module (i.e., the
maximum number of rows in the pg_stat_statements table)

➢ pg_stat_statements.track : pg_stat_statements.track specifies the
statements that can be tracked by pg_stat_statements module. It can be
only top level statement or all the statements including the nested
statements or none.

➢ pg_stat_statements.track_utility : pg_stat_statements.track_utility controls
whether utility commands (other than SELECT, INSERT, UPDATE, DELETE)
are tracked by the module.

➢ pg_stat_statements.save : pg_stat_statements.save specifies whether to save
statement statistics across server shutdowns. If it is off then statistics are not
saved at shutdown nor reloaded at server start. The default value is on.

37

pg_stat_statements (Continued)

38

pg_stat_statements (Continued)

● Query + No. Of Calls + Avg Time

queryid 6669079817886550995

query select * from tab1 where a=$1

calls 6

total_time 1.30983

● Avg. Shared Buffer Hit Ratio

shared_blks_hit 6

shared_blks_read 1

hit_rate = shared_blks_hit / (shared_blks_hit + shared_blks_read) :
85%

39

pg_stat_statements (Continued)

● Time Spent Reading Or Writing To Disk (in Ms)

blk_read_time 10.549

blk_write_time 441.661

● Monitoring Query Performance Using Pg_stat_statements

➢ SELECT substring(query, 1, 50) AS short_query, round(total_time::numeric,
2) AS total_time, calls, round(mean_time::numeric, 2) AS mean, round((100 *
total_time / sum(total_time::numeric) OVER ())::numeric, 2) AS
percentage_cpu, shared_blks_hit, shared_blks_read FROM
pg_stat_statements ORDER BY total_time DESC LIMIT 10;

40

pg_stat_statements (Continued)

● Monitoring Query Performance Using Pg_stat_statements

41

● Database Logs

● The PostgreSQL Statistics Collector

● Statistics Views

● Wait Events

● Monitoring query performance using pg_stat_statements

● Useful debugging tools

Agenda

42

Useful debugging Tools
 ● pageinspect

● pageinspect is an extension module in postgres that provides functions
to inspect the contents of database pages at low level which can be
used for debugging.

● It includes various user exposed functions that can be used to view the
contents of heap and different index pages.

● It is particularly useful in understanding the changes happening at page
level when various actions are performed on a relation.

43

Useful debugging Tools (Continued)
 ● pageinspect

➢ CREATE TABLE tab1(a int4 primary key);

➢ SELECT txid_current();

➢ INSERT INTO tab1 VALUES(10);

➢ CREATE EXTENSION pageinspect;

test=# SELECT lp, lp_len, t_xmin, t_xmax, lp_off FROM
heap_page_items(get_raw_page('tab1', 0));

lp | lp_len | t_xmin | t_xmax | lp_off
----+--------+--------+--------+--------
 1 | 28 | 599 | 0 | 8160
(1 row)

44

Useful debugging Tools (Continued)
 ● pageinspect

➢ SELECT txid_current();

➢ UPDATE tab1 SET a=20 WHERE a=10;

➢ COMMIT;

test=# SELECT lp, lp_len, t_xmin, t_xmax, lp_off FROM
heap_page_items(get_raw_page('tab1', 0));

 lp | lp_len | t_xmin | t_xmax | lp_off
----+--------+--------+--------+--------
 1 | 28 | 599 | 601 | 8160
 2 | 28 | 601 | 0 | 8128
(2 rows)

45

Useful debugging Tools (Continued)
 ● pageinspect

test=# SELECT * FROM bt_page_items('tab1_pkey', 1);

 itemoffset | ctid | itemlen | nulls | vars | data
------------+-------+---------+-------+------+-------------------------
 1 | (0,1) | 16 | f | f | 0a 00 00 00 00 00 00 00
 2 | (0,2) | 16 | f | f | 14 00 00 00 00 00 00 00
(2 rows)

➢ VACUUM tab1;

test=# SELECT lp, lp_len, t_xmin, t_xmax, lp_off FROM
heap_page_items(get_raw_page('tab1', 0));

 lp | lp_len | t_xmin | t_xmax | lp_off
----+--------+--------+--------+--------
 1 | 0 | | | 0
 2 | 28 | 601 | 0 | 8160
(2 rows)

46

Useful debugging Tools (Continued)
 ● pageinspect

test=# SELECT * FROM bt_page_items('tab1_pkey', 1);

itemoffset | ctid | itemlen | nulls | vars | data
------------+-------+---------+-------+------+-------------------------
 1 | (0,2) | 16 | f | f | 14 00 00 00 00 00 00 00
(1 row)

● pgstattuple
● pgstattuple is another extension module in postgres that provides

table-level statistics.

● This contrib module is particularly useful in identifying the tables
which have bloated and how much bloat is there.

● Like pageinspect, this module also provides a set of functions that
can be used to identify the bloated tables in postgres.

47

Useful debugging Tools (Continued)
 ● pgstattuple

● Now, Let us generate some bloat artificially and see how this
module can be helpful in identifying it.

pgbench -i -s10 test

Client-1:
test=# \dt+ pgbench_accounts
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+------------------+-------+-------+--------+-------------
 public | pgbench_accounts | table | ashu | 128 MB |
(1 row)

test=# begin; set default_transaction_isolation TO 'repeatable read';

test=# SELECT * FROM pgbench_accounts LIMIT 1;

48

Useful debugging Tools (Continued)
 ● pgstattuple

Client-2:
pgbench --no-vacuum --client=2 --jobs=4 --transactions=100000
--protocol=prepared test

Client-1:
test=# \dt+ pgbench_accounts
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+------------------+-------+-------+--------+-------------
 public | pgbench_accounts | table | ashu | 256 MB |
(1 row)

➢ From above data, it seems that the test table “pgbench_accounts”
has indeed doubled in size. Now, let's perform VACUUM ANALYZE
on this table and verify if it has really bloated using pgstattuple
module.

49

Useful debugging Tools (Continued)
 ● pgstattuple

Client-1:
➢ VACUUM ANALYZE pgbench_accounts;

➢ CREATE EXTENSION pgstattuple;

test=# select table_len, scanned_percent, approx_free_space,
approx_free_percent from pgstattuple_approx('pgbench_accounts');

 table_len | scanned_percent | approx_free_space | approx_free_percent
-----------+-----------------+-------------------+---------------------
 268607488 | 0 | 131164800 | 48.8314011558754
(1 row)

● Likewise, there are several other functions available in pgstattuple
module which can be used for finding various informations. For eg.
there is a function named pgstattuple(), which returns a relation’s
physical length, percentage of “dead” tuples, and other infos.

50

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

